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Aggregate production planning (APP) involves the 
simultaneous determination of company’s production, inventory 
and employment levels which fall between the broad decisions 
of long range planning and detailed short range planning. A 
mathematical model is formulated to investigate the optimal 
decision on each planning period. The goal is to minimize the 
total relevant costs considering time varying demand, unstable 
production capacity and work forces, inventory control, 
wastage reduction, and proper incentive for work force. Genetic 
Algorithm Optimization (GAO) approach and Big M method are 
used for solving a real time multi-product, multi-period 
aggregate production planning (APP) decision problem. The 
practicality of the proposed model is demonstrated through its 
application in solving an APP decision problem in an industrial 
case study. Required values of decision variables are obtained 
by both Big M method and genetic algorithm optimization model 
using TORA version 2.00, Feb. 2006 software and MATLAB 
R2011a software respectively. According to cost minimization 
objective of Aggregate production planning, genetic algorithm 
optimization results better than Big M method. 

 
Field of Research: Management 
 

1. Introduction 
 
Manufacturers use economic models and forecasting researches to organize a firm's life to 
respond to the inevitable changes of the broader economy. Production planning does this in 
response to changes in demand. Changing a company's production schedule on a moment’s 
notice can be expensive and lead to insecurity. Planning for changes in demand months in 
advance ensures that the change of production schedules can occur with little effort. 
Aggregate production planning is a general approach to altering a company's production 
schedule to respond to changes in demand. Aggregate production planning (APP) is a 
medium range capacity planning that typically encompasses a time horizon from 3 to18 
months and is about determining the optimum production, work force and inventory levels for 
each period of planning horizon for a given set of production resources and constraints. Such 
planning usually involves one product or a family of similar products with small differences so 
that considering the problem from an aggregated viewpoint is justified.  
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The goal of aggregate production planning (APP) is to set overall production levels for 
eachproduct category to meet the fluctuating or uncertain demands in near future while 
minimizing costs and to set policies and decisions about the issues of hiring, lay off, overtime, 
backorder, subcontracting and inventory for the efficient utilization of resources. 
 
APP is an important upper level planning activity in a production management system. Other 
forms of family disaggregation plans, such as master production schedule, capacity plan, and 

material requirements plan all depend on APP in a hierarchical way. In previous work 

typically the costs included in aggregate production planning are costs of production, 
inventory, sub-contracting, backlog, payroll, hiring, and regular-time and overtime. In some 

research also consider the time value of money. In this study, an aggregate Production 
Planning model is formulated minimize the total production cost under demand uncertainty 
environment considering wastage cost and incentive for workforces which are not considered 
in production planning models in earlier research works. In this work, comparison in results is 
provided by using two different solution method named Genetic Algorithm and Big-M 
technique to understand whether meta-heuristic (i.e Genetic Algorithm) solution procedure 
provides best result or not. No such comparison is performed in earlier research works. 
 
This paper arranged as follows- Section 2 presents the literature review to identify the 
research scope on Aggregate Production Planning (APP). Section 3 explains the problem 
description and model formulation. In this section, the Mathematical Model for APP is 
explained in detail. Section 4 contains model implementation through data collection and 
explanation. Section 5 presents summarized results and Section 6 presents the conclusions 
of the study. 
 

2. Literature Review 
 
Aggregate production planning is associated with the determination of inventory, production 
and work force levels to consider fluctuating demand needs over a planning horizon, which 
ranges from six months up to a year. Typically, the planning horizon includes the next 
seasonal peak in demand. The planning horizon can be divided into periods. For instance, a 
one-year planning horizon could consist of six one-month periods plus two three-month 
periods. We may consider a fixed value for the physical resources of the firm during the 
planning horizon of interest and the planning attempt is oriented towards the best utilization 
of those resources, given the external demand needs. Since it is usually impractical to 
consider every fine detail related to the production process while maintaining such a long 
planning horizon, it is obligatory to aggregate the information being processed. The aggregate 
production approach is forecasted on the existence of an aggregate unit of production, such 
as the “average" item, or in terms of weight, volume, production time, or dollar value. Plans 
are based on aggregate demand for one or more aggregate items. Once the aggregate 
production plan is created, constraints are applied on the detailed production scheduling 
process, which decides the specific quantities to be produced of each individual item. In this 
paper, Dotoli et al (2006) it is considered the optimization of integrated supply chain including 
raw materials supply, intermediate supply, manufacturing, distribution, retail and customers. 
Many companies have been trying to optimize their production and distribution systems 
separately, but using this approach limits any possible increase in profit it was stated by Park 
(2005). 
 
The goal of APP is normally to meet forecasted fluctuating demand requirements during a 
specific period in cost-effective manner. Typically costs include the costs of production, 
inventory, sub-contracting, backlog, payroll, hiring, and regular-time and overtime Silva e
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(2006) and also in papers (Jung, 2005) propose a solution for integrated production and 
distribution planning in complicated environments where the objective is to maximize the total 
profit. APP has attracted considerable interest from both practitioners and academics. 
 
For solving APP problems, certain constraints are imposed which demand constraint 
optimization. Ioannis (2009) described a novel genetic algorithm for the problem of 
constrained optimization. His model was a modified version of the genetic operators namely 
crossover and mutation. These new version preserve the feasibility of the trial solutions of the 
constrained problem that are encoded in the chromosomes. Ramezanian et al. (2012) 
concentrated on multi-period, multi-product and multi-machine systems with setup decisions. 
In their study, they developed a mixed integer linear programming (MILP) model for general 
two-phase aggregate production planning systems. Due to NP-hard class of APP, they 
implemented a genetic algorithm and Tabu search for solving this problem. Meta-heuristic 
methods are used to solve NP-hard problems and due to NP-hard class of aggregate 
production planning, these approaches have been used for solving APP by Fahimniaet et al 
(2006) and Jiang et al (2008) and other method such as hybrid algorithm is used by Ganesh 
and Punniyamoorthy (2005); Kumar and Haq (2005), Baykasogluy (2006) and Pradenas and 
Pe-nailillo (2004) use Tabu search algorithm to solve APP models. 
 
Wang and Liang (2004) developed a fuzzy multi-objective linear programming (FMOLP) 
model for solving the multi-product APP decision problem in a fuzzy environment. The 
proposed model attempts to minimize total production costs, carrying and backordering costs 
and rates of changes in labor levels considering inventory level, labor levels, capacity, 
warehouse space and the time value of money. 
 
If decisions are made based on the deterministic model, there is a risk that demand might not 
be met with the right products. It is an unfortunate reality that some critical parameters such 
as customer demand, price and manufacturing capacity are not known with certainty. If the 
supply chain designed by the decision makers is not robust with respect to the uncertain 
environment, the impact of performance inefficiency (e.g. delay) could be devastating for all 
kinds of enterprises. Since they cannot usually protect themselves completely against the 
risk, they have to manage it. Risk management can be used as a tool for greater rewards, not 
just control against loss. There are lots of research work to deal with enterprise risk 
management by Wu and Olson (2008, 2009a, 2009b, 2010a, 2010b) and Wu et al (2010).  
 
Yeh and Chuang (2011) Four differences separate GAs from more traditional optimization 
techniques and those are, direct manipulation of a coding, searching from a population rather 
than a single point, following a blind searching technique and finally search using stochastic 
operators, not deterministic rules. It can be quite efficient to combine GA with other 
optimization methods. GA seems to be quite good for finding generally good global solutions, 
but quite inefficient at locating the last few mutations to determine the absolute optimum. 
Other techniques (such as simple hill climbing) are quite efficient at finding absolute optimum 
in a limited region. Alternating GA and hill climbing can improve the efficiency of GA while 
overcoming the lack of robustness of hill climbing. For solving Multiple Objective problems 
GA could generate the most optimum value. In Kazemi-Zanjani et al (2010) robust 
optimization approach was proposed as one of the potential methodologies to address MPMP 
production planning in a manufacturing environment with random yield. Ning et al (2006) 
considered multi product APP in fuzzy random environment. A fuzzy random APP model was 
established, in which the market demand, production cost, subcontracting cost, inventory 
carrying cost, backorder cost, product capacity, sales revenue, maximum labor level, 
maximum capital level, etc were all characterized as fuzzy random variables. Then a hybrid 
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optimization algorithm combining fuzzy random simulation, genetic algorithm (GA), neural 
network (NN) and simultaneous perturbation stochastic approximation (SPSA) algorithm was 
proposed to solve the model. Sharma and Jana (2009) Genetic Algorithm (GA) normally 
provides a series of alternative solutions for various GA parameter values. The decision-
maker can find alternative optimal solutions from a series of alternative values. Bunnag and 
Sun (2005) presented a stochastic optimization method, referred to as a Genetic Algorithm 
(GA), for solving constrained optimization problems over a compact search domain. It was a 
real coded GA, which converges in probability to the optimal solution. The constraints were 
treated through a repair operator. A specific repair operator was included for linear inequality 
constraints.  
 
In contrast to aggregate-level plans, disaggregate-level plans conceptually provide each 
evacuee with unique staging and routing instructions, and thus these plans represent 
unstructured, split table, dynamic network flows through time. Disaggregate-level models are 
easier to formulate and solve than aggregate-level plans, for instance, many disaggregate-
level models Chalmet (1982); Chiu (2007); Yao (2009); Bish (2011b) are formulated as linear 
programs (LPs) because of the continuous nature of their network flows. On the other hand, 
aggregate-level models are combinatorial in nature, and thus require binary decision 
variables and are formulated as more difficult-to-solve integer programs. Aggregate-level 
plans are, however, easier to implement in practice. 
 
When we solve APP problem, we have to face with uncertain market demands and capacities 
in production environment, imprecise process times, and other factors introducing inherent 
uncertainty to the solution. Ramazanian and Modares (2011) introduced a multi-objective goal 
programming model for a multi-product multi-step multi-period APP problem in the cement 
industry. The model was reformulated as a single objective nonlinear programming model. It 
was solved by using the expended objective function method and a propose PSO variant 
whose inertia weighted was set as a function. The simulation comparing with GA in the final 
showed that PSO gains satisfactory result then GA. Baltas et al (2013) introduced a PSO 
variant to a service design and diversification problem. They designed and implemented 
genetic algorithm and PSO to stated preference data derived from conjoint consumer 
preferences for service attributes in a retail setting. Their method has valuable implications 
for managers aiming to improve how they design their services. 
 
Liang (2007) introduced an interactive possibilistic linear programming (i-PLP) approach to 
solve multi-product and multi-time period APP problems with multiple imprecise objectives 
and cost coefficients by triangular possibility distributions in uncertain environments. The 
imprecise multi-objective APP model designed here seeks to minimize total production costs 
and changes in work-force level with reference to imprecise demand, cost coefficients, 
available resources and capacity. Additionally, the proposed i-PLP approach provides a 
systematic framework that helps the decision-making process to solve fuzzy multi-objective 
APP problems, enabling decision makers to interactively modify the imprecise data and 
parameters until a set of satisfactory solutions is derived. Paiva and Morabito (2009) 
proposed an optimization model to support decisions in the APP f sugar and ethanol milling 
companies. The model is a mixed integer programming formulation based on the industrial 
process selection and the production lot-sizing model. Also, in their APP real case study, the 
application of the model results in 12,306 variables, where 5796 are binary and 6902 
constraints.  
 
Aliev et al (2007) developed a fuzzy integrated multi-period and multi-product aggregate 
production and distribution model in supply chain. The model was formulated in terms of fuzzy 
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programming and the solution was provided by genetic optimization (genetic algorithm). 
Ashayeri and Selen (2003) applied an APP model to make strategic planning decisions for 
the pharmaceutical industry in The Netherlands. Pega et al (2000) developed an integrated 
approach to address the aggregate planning problem and applied it to a firm, which yielded 
significant savings in the operational costs of the firm. 
 
In papers Disney et al (2004); Gaonkar and Viswanadham, (2005) the authors consider e-
supply chain optimization between different stages of the chain, i.e. between suppliers and 
consumers, manufacturers and retailers. Feng and Rakesh (2010) considered an integrated 
optimization of logistics and production costs associated with the supply chain members 
based on the scenario approach to handle the uncertainty of demand. The formulation was a 
robust optimization model with expected total costs, cost variability due to demand 
uncertainty, and expected penalty. Andreas and Smith (2009) presented a model that 
considers aggregate-level routing where the evacuation routes for all sources combine to 
form a tree. Al-e-hashem et al (2013) consider transport mode decision variables (mode 
choice) to reduce GHGs and assume an interrelationship between lead time and 
transportation mode: the shorter the lead times, the more expensive transportation will be, 
while also increasing GHGs and waste management; obviously a supply chain is also 
characterized by the products it supplies. The point is that some products are friendlier to the 
environment than others. In other words, it is assumed that each unit of product is associated 
with a percentage of waste, and it limits the total amount of waste produced by each factory. 
 
Chakrabortty and Hasin (2013) presented an interactive MOGA approach to determine the 
optimum aggregate plan for meeting forecasted demand by adjusting regular and overtime 
production rates, inventory levels, labor levels, subcontracting and backordering rates, 
escalation factor in the each of the cost categories over a period of time and other controllable 
variables. 
 
Throughout the review, it is obvious that there have been a long phase for Aggregate 
production planning problem. All the previous works described in the above section gives 
descriptive knowledge on aggregate production planning study and all are relevant to real 
world problem. This study is oriented to a problem context, in which a manufacturer makes 
multiple products in various periods as the production capacities. In the previous works with 
GA for APP, there was only single application of escalating factors for certainty. The proposed 
approach attempts to evaluate the impact of escalating factor under uncertain demand but 
the paper Chakrabortty and Hasin (2013) evaluate impact of escalating factor under certain 
demand to minimize total costs. In general the factors considered for aggregate production 
planning are inventory levels, labor levels, overtime, subcontracting and backordering levels, 
labor level, machine, warehouse capacity. In paper Al-e-hashem et al (2013) wastage cost 
considered for transportation but in this study wastage cost include for total production cost 
which have an impact on total cost beside that incentive are also considered for the 
employees satisfaction. 
 
In this work a single objective approach is developed to minimize total costs in terms of 
inventory levels, labor levels, overtime, subcontracting and backordering levels, and labor, 
machine, warehouse capacity, incentive and wastage cost. In prior researches as mentioned 
above workforce incentive and production wastage cost with other previously mentioned 
costs in APP model is not included. In this work the aforementioned cost elements (that are 
the workforce incentive and production wastage cost) are consider to provide more sensible 
and relevant cost data. In this work, comparison in results is provided by using two different 
solution method named Genetic Algorithm and Big-M technique to test whether minimum total 
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cost is achieved by meta-heuristic algorithm named genetic algorithm or not, in compare with 
Big-M technique. 
 

3. Problem Description & Model Formulation 
 
In the deterministic model, there is a risk that demand might not be met with the right products. 
It is an unfortunate reality that some critical parameters such as customer demand, price and 
manufacturing capacity are not known with certainty. If the production planning by the 
decision makers is not robust with respect to the uncertain environment, the impact of 
performance inefficiency (e.g. delay) could be devastating for all kinds of enterprises Wu and 
Olson (2008, 2009a, 2009b, 2010a, 2010b), Wu et. Al. (2010) This APP problem focuses on 
developing a single objective GA approach to determine the optimum aggregate plan for 
meeting uncertain demand by adjusting regular and overtime production rates, inventory 
levels, labor levels, subcontracting and backordering rates other controllable variables. In this 
model wastage cost and incentive are newly added. Wastage is costing real money and this 
is coming directly to increase total production cost, considering this issue waste cost is added 
in this problem. Due to inflation the time value of money decreases for this reason escalating 
factor is also considered. For the satisfaction of worker the incentive with regular & overtime 
production is also included in this APP problem.  
 
The multi-product, multi-period APP problem can be described as follows. Assume that a 
company manufactures N kinds of products to meet market demand over a planning horizon 
T.  
 
Assumptions- 
 
Based on the characteristics of the APP problem, the mathematical model will be constructed 
based on the following assumptions: 
 

1. The values of all parameters are certain over the next T planning horizon except demand.  
2. The escalating factors in each of the costs categories are certain over the next T planning 
horizon. 
3. Actual labor levels, machine capacity and warehouse space in each period cannot exceed 
their respective maximum levels. 
4. Uncertain demand is normally distributed with a mean & standard deviation. 
 
Notations- 
 

The following notation is used after reviewing the literature and considering practical 
situations Chakrabortty, R. K. and Hasin, Md. A. A. (2013) & Al-e-hashem, S.M.J.M., Babolib, 
A., Sazvarb, Z. (2013)- 
 

n=product type & t=period 
Dnt = Demand uncertain for nth product in period t (units)  
Rcnt = Regular time production cost per unit for nth product in period t (Tk. /unit)  
Rxnt= Regular time production of nth product in period t (units)  
ir = Escalating factor for regular time production cost (%)  
Ocnt = Overtime production cost per unit for nth product in period t (Tk. /unit)  
Oxnt= Overtime production of nth product in period t (units)  
io = Escalating factor for overtime production cost (%)  
Scnt = Subcontracting cost per unit of nth product in period t (Tk. /unit)  
Sxnt= Subcontracting volume of nth product in period t (units)  
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is = Escalating factor for subcontract cost (%)  
Icnt = Inventory carrying cost per unit of nth product in period t (Tk. /unit)  
Ixnt= Inventory level of nth product (units) in period tii = Escalating factor for inventory carrying 
cost (%)  
Bcnt = Backorder cost per unit of nth product in period t (Tk. /unit)  
Bxnt= Backorder level of nth product in period t (unit)  
ib = Escalating factor for backorder cost (%)  
Wcnt = Wastage cost per unit of nth product in period t (Tk. /unit)  
Wxnt= Wastage level of nth product in period t (unit)  
Wpnt= Percentage of wastage of nth product in period t (unit)  
Awnt= Allowable wastage produce in factory  
Tpnt= Targeted production for incentive of t period 
Tcnt=Cost of incentive of per unit product 
Tint = Amount of incentive level of nth product in period t (unit) 
Hct = Cost to hire one worker in period t (Tk. /man-hour)  
Ht = Worker hired in period t (man-hour)  
Fct = Cost to layoff one worker in period t (Tk. /man-hour)  
Ft = Workers laid off in period t (man-hour)  
if = Escalating factor for hire and layoff cost (%)  
Lnt = Hours of labor usage per unit of nth product in period t (machine-hour/unit)  
Mnt = Hours of machine usage per unit of nth product in period t (machine-hour/unit)  
Wnt = Warehouse spaces per unit of nth product in period t (ft2/unit)  
Ltmax = Maximum labor level available in period t (man-hour)  
Mtmax = Maximum machine capacity available in period t (machine-hour)  
Wtmax = Maximum warehouse space available in period t (ft2) 
 
Decision Variable- 
 

Rxnt= Regular time production of nth product in period t (units)  
Oxnt= Overtime production of nth product in period t (units)  
Sxnt= Subcontracting volume of nth product in period t (units)  
Ixnt= Inventory level of nth product (units) in period t 
Bxnt= Backorder level of nth product in period t (unit)  
Wxnt= Waste level of nth product in period t (unit)  
Tint = Amount of incentive level of nth product in period t (unit) 
Ht = Worker hired in period t (man-hour)  
Ft = Workers laid off in period t (man-hour)  
 
Objective Function- 
 
Most practical decisions made to solve APP problems usually consider total costs. The 
proposed GA targeted the single objective function aims to minimize total cost of Aggregate 
Production Planning including production cost (regular time production cost, overtime 
production cost, subcontracting), labor cost (hiring cost, firing cost), inventory cost, shortage 
cost, wastage cost over the planning horizon T. Accordingly, the objective function of the 
proposed model is as follows: 
 

Min, Z = ∑ (Ht. Hct
t
t=1 + Ft. Fct)(1 + if)

t + ∑ .t
t=1 ∑ [IxntIcnt

n
n=1 (1 + ii)

t + BxntBcnt(1 +
ib)t+SxntScnt(1 + is)t +  (WxntWcnt + TcntTint) +RxntRcnt(1 + ir)t + OxntOcnt(1 + io)t]; t= 
1,2,3,…. T and n= 1,2,3,…N; 
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Constraints- 
 
Constraints on carrying inventory: Ixnt- Bxnt= Ixn(t−1) + Rxnt+Oxnt + Sxnt - Dnt - Bxn(t−1)-Wxnt 

; where t= 1,2,3,…. T and  
n= 1,2,3,…N;        …………………...…..(1) 
 

Ixnt ≥   Intmin ; t= 1,2,3,…. T and n= 1,2,3,…N;   …………………….....(2) 
 

Bxnt ≤   Bntmax; t= 1,2,3,…. T and n= 1,2,3,…N;   ……………………….(3) 
 
Where, Dnt denotes the uncertain demand of the nth product in period t which follows normal 
distribution with mean (µ) and standard deviation (σ). The sum of regular and overtime 
production, inventory levels, subcontracting, backorder levels and wastage levels essentially 
should equal the market demand, as in first constraint Equation. Demand over a particular 
period can be either met or backordered, but a backorder must be fulfilled in the subsequent 
period. The second & third constraints determine the level of inventory and the level of 
backorder. 
 
Constraints on labor levels: 
 

∑ Ln(t−1)
n
n=1 ∗ (Rxn(t−1)+Oxn(t−1) ) + Ht - Ft= ∑ Lnt

N
n=1 (Rxnt+Oxnt ); t= 1,2,3,…. T and  

n= 1,2,3,…N;        ……………………….(4) 
 
(Rxnt+Oxnt) Lnt ≤ Ltmax; t= 1,2,3,…. T and n= 1,2,3,…N;  ……………………….(5) 
 
Here in the fourth constraint, equation represents a set of constraints in which the labor levels 
in period t equal the labor levels in period (t-1) plus new hires less layoffs in period t. Actual 
labor levels cannot exceed the maximum available labor levels in each period. Maximum 
available labor levels are imprecise, owing to uncertain labor market demand and supply. 
 
Constraints on Machine capacity & Warehouse space: 
 

(Rxnt+Oxnt) Mnt ≤ Mtmax; t= 1,2,3,…. T and n= 1,2,3,…N;       ……………………….(6) 
 

Wnt ∗ Ixnt ≤   Wtmax; t= 1,2,3,…. T and n= 1,2,3,…N;              …………...…………..(7) 
 

Sxnt ≤   Sntmax; t= 1,2,3,…. T and n= 1,2,3,…N;   ……...………………..(8) 
 
Eq. (6-8) represents the limits of actual machine, warehouse capacity in each period and 
subcontracting level. 
 
Constraints on Wastage & Incentive: 
 

(Rxnt+Oxnt) Wpnt ≤ 𝐴𝑊𝑛𝑡; t= 1,2,3,…. T and n= 1,2,3,…N;   ...……………………(9) 
 
(Rxnt+Oxnt) -Tpnt = Tint ; t= 1,2,3,…. T and n= 1,2,3,…N;   ..…………………. (10) 
 
Non-negativity Constraints on decision variables are: 
 

Rxnt, Oxnt, Ft, Ht, Ixnt, Bxnt, Sxnt, Wxnt, Tint ≥ 0; t= 1,2,3,…. T and n= 1,2,3,…N;  
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4. Model Implementation 
 
The APP decision problem for manufacturing plant presented here focuses on developing an 
interactive GA approach for minimizing total costs. In our study we used the secondary data 
from a journal Chakrabortty R. K. and Hasin Md. A. A.  (2013) where data was collected from 
one of the pioneer company of Ready Made Garments (RMG) sector in Bangladesh. The 
planning horizon is 2 months (T=2) long, including May and June. The model includes two 
types (N=2) of knit wear items, namely the hooded jacket (Product 1) and special type of 
ladies cardigan (Product 2). 
 
4.1 Data Description 
 
According to the preliminary environmental information; Table 1, Table 2, Table 3, Table 4 
and Table 5 summarize the mean demand, standard deviation of demand, related operating 
cost, and capacity data. Relevant data are as follows-  
 

1. Initial inventory in period 1 is 500 units of product 1 and 200 units of product 2. End 
inventory in period 2 is 400 units of product 1 and 300 units of product 2.  
 
2. Initial labor level is 225 man-hour. The costs associated with hiring and layoffs are Tk.22 
and Tk.8 per worker per hour, respectively.  
 
3. Hours of labor per unit for any periods are fixed at 0.033 man-hour for product 1 and 0.05 
man- hour for product 2. Hours of machine usage per unit for each of the two planning periods 
are 0.1 machine-hours for product 1 and 0.08 machine-hours for product 2. Warehouse 
spaces required per unit are 1 square feet for product 1 and 1.5 square feet for product 2.  
 
4. The expected escalating factor in each of the costs categories are 1%. 
 

Table 1: Initial labor levels, hiring & firing cost 

Item Unit 

Initial labor level 225 man-hour 

Hiring cost 22 Tk. 

Firing cost 8 Tk. 
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Table 2: Initial & end inventory, hours of labor per unit product, hours of machine 
usage per unit product, warehouse space, wastage cost & incentive cost. 

Item Product 1 Product 2 

Initial inventory 500 Units 200 Units 

End inventory 400 Units 300 Units 

Hours of labor per unit product 
0.033  

man-hour 
0.05  

man-hour 

Hours of machine usage per unit 
product 

0.1  
machine-hour 

0.08 
machine-hour 

Warehouse space 1 (sq/ft.) 1.5 (sq/ft.) 

Wcnt* 32 Tk. 30 Tk. 

Tcnt* 0.2 Tk. 0.2 Tk. 

 
Table 3: Related Operating cost data 

Product 
Rcnt 

(Tk./unit) 

Ocnt 

(Tk./unit) 

Scnt 

(Tk./unit) 

Icnt 

(Tk./unit) 

Bcnt 

(Tk./unit) 

1 22 40 27 3.5 42 

2 20 40 30 4 47 

 
Table 4: Mean demand and standard deviation 

Item(unit) 
Period Period 

1 2 

µ1t* 1400 3000 

µ2t* 1600 800 

σ1t* 90 180 

σ2t* 100 50 
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Table 5: Maximum labor, machine, warehouse capacity, back order level, 
subcontracted volume & minimum Inventory data, allowable wastage, targeted 

production  
Period Period  Period Period 

Item(unit) 1 2 Item(unit) 1 2 

I1tmin 300 350 S1tmax 200 350 

I2tmin 150 200 S2tmax 100 100 

Tp1t* 1250 2800 B1tmax 60 150 

Tp2t* 1450 700  B2tmax 50 40 

Wtmax 1000 1000 Aw1t* 42 90 

Ltmax 225 225 Aw2t* 48 24 

Mtmax 400 500 

 
* Data was collected from Comfit Composite Knit Limited (CCKL). 
 

5. Result Analysis 
 
By using MATLAB R2011a software - Objective function value, which is obtained considering 
Genetic Algorithm (GA) optimization technique is BDT 310,590 and by using TORA version 
2.00, Feb. 2006 software - Objective function value, which is obtained considering Big M 
method is BDT 662,827. Summarized result that are obtained by using Genetic Algorithm 
(GA) optimization technique in MATLAB R2011a and Big M method in TORA version 2.00, 
Feb. 2006 software are given in table 6.
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Table 6: Summarized result of APP model 
 

 MATLAB R2011a  
software 

TORA version 2.00  
software 

Minimum Total Cost obtained (The objective function Value), in BDT 

 310,590 662,827 

Regular time production quantity (Rxnt), in units 

 Period 1 Period 2 Period 1 Period 2 

Product 1 1229.45 2673.55 2100 3050 

Product 2 811.44 1765.04 1550 1200 

Overtime production (Oxnt), in units 

 Period 1 Period 2 Period 1 Period 2 

Product 1 81.06 856.55 170 147 

Product 2 53.5 565.83 240 400 

Subcontracting volume (Sxnt), in units 

 Period 1 Period 2 Period 1 Period 2 

Product 1 45.62 349.59 400 350 

Product 2 100 36.85 100 700 

Inventory level (Ixnt), in units 

 Period 1 Period 2 Period 1 Period 2 

Product 1 300 350 1000 350 

Product 2 150 666.66 150 600 

Backorder level (Bxnt), in units 

 Period 1 Period 2 Period 1 Period 2 

Product 1 45.63 149.98 147 150 

Product 2 49.25 36.85 200 190 

Waste level (Wxnt), in units 

 Period 1 Period 2 Period 1 Period 2 

Product 1 46.62 63.51 21 165 

Product 2 59.94 36.85 135 27 

Amount of incentive level (Tint), in units 

 Period 1 Period 2 Period 1 Period 2 

Product 1 60.5 182.99 850 250 

Product 2 105.07 99.22 100 500 

 Period 1 Period 2 Period 1 Period 2 

Worker hired 
(Ht), in man-
hour 

184.43 136.77 162 133 

Workers laid 
off (Ft), in 
man-hour 

2.67 28.26 147.5 133.5 
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Comparing in between the Big M method and genetic algorithm (GA) optimization result, 
genetic algorithm optimization results better than Big M method as minimum total cost is 
obtained by GA method. 
  
                     Figure 1: Comparison Chart for objective function values 

 
In GA by using crossover options, mutation options, creations functions, selection options and 
migration function the result is obtained. But Big-M technique is used to solve this problem 
because in this problem both equality constraints and inequality constraints are present. 
 

6. Conclusions 
 
This study is oriented to a problem context, in which a manufacturer makes multiple products 
in various periods as the production capacities. To meet the time varying demands it utmost 
important to produce the optimum quantity beside that wastage in the production floor another 
burden, for satisfaction of workers and consistency in work force level, incentives are 
provided. In any factory, typically there are seven types of wastages in the production floor. 
In this study among different types of wastage only defective units of final product are 
considered. The total wastage cost only depends on the amount of final product wastage. 
Learning capability, regularity and other factors are not considered to provide incentive. An 
uncertain demand is calculated under normal distribution assumption and for further research 
uncertain environment can be considered with other techniques. Over the past few decades, 
researchers have proposed many aggregate planning models with different levels of 
sophistication. This work is an attempt to bridge this gap of not including the waste cost, 
workforce incentive in aggregate planning models in previous studies. Comparatively 
Minimum cost is achieved considering two new cost factors in total cost that is the wastage 
cost and workforce incentives. In this research only one meta-heuristic algorithm (that is 
Genetic Algorithm) is compared with linear programming method named Big-M technique. 
The formulated model of APP can also be solved by other meta-heuristic optimization 
techniques such as Particle Swarm Optimization (PSO), Simulated Annealing, Ant Colony 
Optimization, Artificial Bee Colony Optimization to compare the outcomes with the results 
obtained from Big-M technique etc.  
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